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Two-dimensional finite element solutions for planar solidification from an undercooled melt 
are presented. These simulations are based on the transient heat equation in both solid and 
liquid and show the onset and propagation of both stable and unstable numerical waveforms 
which reproduce those predicted in the continuum analysis with fidelity. The inherent 
instabilities associated with the freezing process dictate a more comprehensive treatment of the 
interfacial temperature than that specified in stable Stefan-type problems. Herein, we apply 
radiation-type boundary conditions on the interface that incorporate temperature effects 
associated with curvature and interfacial kinetics. The interfacial temperature depression due 
to curvature is the primary restraining factor during dendritic growth. Its numerical represen- 
tation requires special care to avoid fatal discretization error; additionally, curvature must be 
treated implicitly within the thermal iteration and within the time step to overcome otherwise 
severe time-step constraints. The numeric simulations of anisotropic ice show similar 
waveform patterns at the onset of the instability to those of isotropic cases. However, as the 
amplitude of the waveform increases significant lengths of interface become orientated along 
the C axis where interfacial kinetics inhibit growth. This alters the interface shape by 
elongating the dendrite finger. ( 19X7 Academic Presr. Inc 

INTRODUCTION 

Dendritic growth of crystals into an undercooled melt is the most common form 
of solidification. Any protuberance or bump on a planar solid/liquid interface that 
extends itself into the melt enhances its growth since the surrounding temperature 
gradient is greater than that about the planar surface. Consequently, the bump 
accelerates its growth relative to the planar front until it is constrained by such fac- 
tors as surface energy. Several stability analyses have been developed that attempt 
to characterize the growth of these perturbations as a function of solidification 
parameters [l-3]. Briefly, the factors of significance and their effect on 
solidification are: 
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Undercooling of the hulk fluid. Increasing the level of undercooling enhances the 
transfer of heat away from the interface. 

Solute concentration. Solute displaced ahead of the freezing front lowers the ther- 
modynamic equilibrium freezing temperature. This mitigates the undercooling effect 
in the zone of higher solute concentration. 

Geometry. The geometry of a dendrite tip is observed to resemble a paraboloid of 
revolution for isotropic materials or a parabolic cylinder in the case of ice, an 
anisotropic material. For the undercooling range of interest curvature is measured 
in microns at the parabola tip which causes a local temperature depression due to 
interfacial surface energy effects. This curvature effect results in a geometry depen- 
dent temperature distribution along the dendrite tip. 

Znteyfaciul growth kinetics. Anisotropic materials such as ice have significant 
interfacial kinetic differences between growth planes. This molecular deposition 
variation contributes to the temperature variation along the crystal surface. 

In an earlier work [4] we examined and compared to available analytic solutions 
the effects of interfacial kinetics and solute concentration for one-dimensional finite 
element simulations of solidification from an undercooled solution. Herein, we 
address two-dimensional formulations of the above problem in quiescent fluid 
without solutes, to focus on the unstable geometrical evolution and its represen- 
tation on finite elements. The numerical treatment of curvature emerges as a key 
ingredient for successful simulation of the physical instability. 

PROBLEM STATEMENT 

Consider a solidification situation consisting of two quiescent phases separated 
by an interface, S, as in Fig. I. By convention, the normal vector on S is directed 

array = 0 

array = 0 

FIG. 1. Two-phase domain with interface S. 
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into the melt. The solidification problem consists of the heat equation on both 
phases separately: 

where the heat capacity and thermal conductivity K are assumed constant within 
each domain. The usual boundary conditions apply on I- and are given in Fig. 1. 
However, temperature and velocity interface conditions are required on S. 

If the only factor affecting the solidification rate were undercooling of the bulk 
fluid, the system could be treated as a Stefan problem with the interface tem- 
perature, T,, equal to the thermodynamic temperature for a planar front with no 
solute, T,,,. However, since solute concentration, geometry and interfacial kinetics 
contribute to the growth mechanism, the interface temperature is variable: 

T,(x,y)=T,,,-T,.-T,.-T,, Pa) 

where the solute concentration effect T,. = 0 for a pure melt and T, is the curvature 
effect due to geometry based on the GibbssThomson relation 

T, = (V,,,lL) @ = (~T,,,lL)(llr, + 1/~2) G’b) 

with L being the volumetric latent heat of fusion and y the interfacial energy. The 
curvature C is the reciprocal of the principle radii, Y, and rz and is assumed positive 
for a concave solid, i.e., when the curvature center is located within the solid. The 
interfacial kinetic effect has been expressed as [S]: 

T, = 0’. n)/p, PC) 

where V. n is the normal component of the phase front velocity with n being the 
unit normal vector and ,u is the kinetic mobility factor. Substituting (2b) and (2~) 
into (2a) and rearranging gives an expression for the equation of motion; 

V.n=p[-((yT,>,IL)@- Z-1, W) 

where T is the temperature expressed as a deviation from T,,,, i.e., T = (T, - T,,). 
The velocity boundary condition at the phase front must preserve the balance 

between the system’s ability to transport sensible heat away from the interface and 
the latent heat of fusion released during solidification, i.e., 

LV.n=A(KVT).n (3) 

where A(KVT) . n is the jump in heat flux across the interface. Here the densities of 
the two phases are assumed equal. 

For many isotropic materials the kinetic mobility factor is assumed sufficiently 
large that T, vanishes and the boundary temperature is effectively uncoupled from 
the velocity. However, retaining (2d) with finite p enables us to model the 
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solidification of water, an anisotropic material of primary physical importance 
whose kinetic mobility ranges from near zero in the C axis to an effective value of 
infinity in the A axis. 

NUMERICAL FORMULATION 

Our starting point is the Galerkin formulation of the heat equation on deforming 
elements as articulated previously [6-lo]; 

= 
s 

KVT. ndjidr+ LV. n@,dS, 
I‘ ?r , (4) 

where (( )) is the inner product notation representing the sum of integrations over 
both phases together; @, are the finite element bases, and V is the velocity of the 
mesh. Formulation of the problem in this manner means that it is solved directly in 
a moving coordinate system. The nodes initially on S continually track the phase 
boundary, and the latent heat balance (3) has been utilized in the surface integral 
on S. 

We substitute (2d) into the phase boundary integral and separate the effects of 
curvature and temperature: 

$ LV .wDidS= -1 p;‘T,,,@@;dS- j- LpTQidS 
, 

(5) 

The temperature component of the surface integral is treated in similar fashion to 
our one-dimensional investigations where curvature was not an issue [4]; 

j LpT@,dS= LT, j” p@,@,dS, 
.\ v 

(6) 

where a repeated index implies summation over that index. In the continuum cur- 
vature is by definition the change in angle with respect to arc length, da/ds in 
Fig. 2a. The curvature portion of (5) can be written as: 

which we evaluate on the actual finite element geometry. On the simple linear 
elements in use here, da is zero except at the nodes, Fig. 2b. Hence, (7) is easily 
evaluated: 

J, ,uyT,,,C@idS=p~T,,,Aa,. (8) 
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FIG. 2. (a) Curvature in the continuum, @(s) = dqds. (b) Curvature treatment on a discretized boun- 
dary. (c) Example of symmerric phase boundary discretization. 

In effect, we have generated a difference expression for curvature Ci = (dcc/dS), with 
AS, = j,, @,dS as indicated in Fig. 2b. Reassembling the surface integral in (4) 
produces the final Galerkin formulation; 

CURVATURE 

(9) 

A. Resolution 

Curvature is the primary restraining factor in the otherwise physically unstable 
situation of solidification from an undercooled melt [3]. Consider the discretized 
phase front in Fig. 2c and let nodej have an x-velocity greater than that of its 
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neighbors. Initially, the numeric curvature grows, but as AS approaches cc the 
numeric curvature decays back to zero. Alternately, let Act approach its maximum 
value of 7c for node j with AS constant. The calculated curvature remains finite as 
opposed to a value approaching cc in the continuum. Consequently, for some 
minimum level of undercooling the numeric curvature is insufficient to properly 
constrain a protuberance or bump on the phase front and the perturbation 
amplitude grows without bound. 

Figure 3 compares numeric and analytic values of curvature as a function of dcc 
for a dendrite tip symmetric about the x-axis as in Fig. 2c, with Ay constant. The 
analytic curvature is taken as that of a parabola fit to the 3 points, C=A = 2Ax/Ay2. 
The maximum numeric curvature occurs at da* = 98.6”, where the condition is 

Cot( Aa/2) = AU/~. (10) 

Of course, maintaining Aa < ALY* is far from sufficient for accuracy purposes 
when compared to C,. For a 95% accurate representation of curvature 
Ar 6 AcY** h 28.2” by evaluation, Fig. 3. This analysis suggests that the numerical 
system would at least remain stable if Acc were kept below roughly 90”. 

Fln.2.l lJt IC C”ruat”rc 
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FIG. 3. Analytic curvature of a parabola fit to 3 points versus numeric curvature as a function of da. 
The maximum numeric curvature occurs at dcc* = 98.6”. To retain 95% accuracy, da Q da** = 28.2 ‘. 
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To isolate the dynamics of geometric perturbations, consider only the relations: 

(V. n), = -AyT,,,/L) C, + F,, (11) 

where the driving forces F, are known. These are to be solved on a grid as in Fig. 4 
in which the mesh velocity in the J’ direction is set to zero for all nodes. Thus, 
V. n = V, cos x and (11) is expressed as 

(cos a,) &,/cir = (V. n), = [ -p(yT,,,;‘L) C:, + F,]. (12) 

Assume there is a steady solution X, ‘(t) such that all node velocities are the same 
( = V,, in the .Y direction); and that a perturbation s,(t) is introduced: 

s,(r)=.\-,‘(t)+c,(1). (13) 

Substituting into (12) and linearizing about X, (t) yields: 

cos x,[clr:,jdt] + V&,i cos r,l?s,= -,t(~r,,,,L)(i@,ii.\-,) E,. (14) 

Cosa I = (Yi+, - y ,.I ) 
dS 

FIG. 4. Grid used for analysis of curvature dynamics with small perturbation F. 
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The derivatives of curvature are 

X,/2-Y, , = -cos r,/(AS,AS,) - 02, sin x,/(2dS,), 

aci/s-Y,= [COS X,/AS, + COS CXJAS,]/AS, - @, [sin rz - sin r,]/(2dS,), 

?C,/(?.~,+, = -cos z2/(AS,AS2) + C, sin zz/(2dS,), 

and similarly for cos x, ; 

i cos x,f?s, , = -cos z, sin r,/~l.r, 

i! cos aJ?s, = 0, 

i cos r,lCs, + , = +cos z, sin x,jcls, 

and upon substitution into (14) we find: 

d: , sin a 
cos 2, z + I/,, --i(h+, -E, (f.Y ,I 

1 

p;‘T,,, cos x, 

[ 

cos r, =- 
LAS, AS, 

(E,+, -e,)-- 
ASI 

1 (E, - 8, ] ) 
1 

inz,(s,-l:, ,)I. ~@,[sinX2jE,i,-~,)+s 
I 

(17) 

Equation (17) is readily identified as a difference approximation to the advec- 
tive-diffusive equation; 

(16a) 

(16b) 

(16~) 

where the material derivative n( )/dr reflects the fact that nodes are in motion along 
s, 

d.5 at? 
z=z+ v.yg. (19) 

Since V, = - V,, sin r, we have in ( 17) a deforming-grid treatment of 

(20) 

Evidently perturbations on a plane front or at a dendrite tip are basically diffusive, 
while advection gains significance due to both mesh motion and curvature as one 
moves downstream from a dendrite tip. In either case one may expect the usual 
parasitic behavior to emerge from roundoff error at small wavelengths relative to 
AS. Control of these parasites is essential to successful simulation and dimensionless 



PLANAR INSTABILITIES 89 

groups analogous to the Fourier, Courant, mesh Courant and Peclet numbers may 
be identified: 

Fo = p(yT,,JL) At/AS’ = (T, (21) 

Co = p(yT,,/L) @ tan ctAt/AS = adcc tan ~1, (22) 

Cm = V, sin xAt/AS, (23) 

Pr = C tan @AS = Aa tan c(. (24) 

Consider a conventional two-level time-stepping scheme, with time levels 
superscripted 

(S f+‘-.u~)/At=f[@IZf;+‘+(l-@@;I. (25) 

From the above analysis, a plane front may be expected to be unstable for Q< 4 
unless 

CT< 1/[2(1-2e)] (26) 

based on the Von Neumann stability analysis [ 111. 
Next consider an explicit iterative approach to making (25) implicit in time 

C(-y ~+‘),“+I-.~~],=f[Q(@~+‘)“‘+(l -@a=“] At. (27) 

Here yn is an iteration counter and the unknown Ck + ’ is simply lagged. The con- 
straint on CT returns in different form-in this case for iterative stability [ 111, 

is required even for U 3 f. The two constraints (26) and (28) are plotted in Fig. 5. It 
is clear that CJ = 1 is the absolute upper limit which can be achieved without implicit 
computation of curvature within the iteration. 

The severity of this time-step constraint is disastrous. Consider modeling the 
freezing of water from a 1 “C undercooled melt. The radius of curvature for the den- 
drite tip is R - 0.6 x 10 4 cm, Ref. [ 123. Using the maximum node spacing 
(Aa = Ax*) gives AS- 3.6R or a time-step constraint of At ,< 1.8 x 10p3s. Modeling 
the ice crystal for a node spacing with ACY = Au** requires 25,000 time steps to 
stimulate one second of crystal growth! 

Our numerical experiments have shown these constraints to be reliable. As a 
result we conclude that the contribution of curvature to boundary motion must be 
treated implicitly in time and within the iteration required during each time step. 
Effectively, the impact of V,, r on C,, and therefore on V,, must be present in the 
calculation without delay. 
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FIG. 5. Sigma constraint is unavoidable when C is treated explicitly in either the time step or the 

iteration within the time step. 

SOLUTION STRATEGY 

In the simulations shown below, node motion is managed as follows. On S, V. n 
is specified by equations (2d) and (3) but the tangential motion is arbitrary. For 
convenience we set V,. = 0 and thus V, = V. n/(x ’ p), where x is the unit vector in 
the x direction and x. n = cos c(. This simple strategy s&ices for the present purpose 
of simulating unstable waves on a planar front, but prohibits the development of 
sidebranching and other shapes where x is not a single-valued function of y. This 
matter is taken up again in the discussion of simulation results. 

Interior node motion is interpolated by a Laplace operator on the current mesh 
geometry, with V,, = 0 everywhere. 

The algebraic system is nonlinear and solved iteratively. Three solution strategies 
of increasing complexity are delineated that successfully solve the following two- 
phase solidification situations, respectively; 

face,(a) t 
wo tmensional, stable Stefan-type solidification with isothermal inter- 

-d’ 

(b) one-dimensional, undercooled solidification with interfacial kinetics, and 
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TABLE I 

Flow Chart for Solution of Two-Dimensional, Stable St&n-Type 
Solidification with Isothermal Interface 

Initialize System 
~~ Tinw Stepping Loop Index h- 

-~~ I~rr~rtiot~ Loop Index HI 
( (.L J,) / ,,IilJil’= j ,,,., ).);“+(,/j,(“)“’ 

Solve interior node motion using a Laplace operator on mesh at time level k 
Construct left-hand side of (4) 
Apply boundary conditions on I‘ according to Fig. I 
Apply type I boundary conditions on S 
Solve for j rr” ’ I”’ ’ for interior nodes and solve for 1, LV n@,dS on the phase boun- 
dary. 
Calculate I’:’ 1 ’ from j”$ LV nQJr/S 
Convergence 1 ~ ( I”” ’ I’“‘): + ’ 11 < 10 ’ for nodes on S 

I I c--,)1=,,!+ I---No--! I 
Yes - - +Update arrays 

h=k+l 
c--No ---Time limit reached -------- 

Yes - - +Terminate Program 

TABLE II 

Flow Chart for Solution of One-Dimensional Solidification 
with Interfacial Kinetics 

Initialize System 
~ i%c~ Srcppirr~ Loop Index h 

Irercrtion Loop - Index nr 
( T) II - 01”’ = (, ( T) ii _ I I”’ + ( 1 _ I,) ( qi 
‘~,“‘~-I’(~)“‘“‘“’ 
: ,. , li. t 0,” _ , ~ , I +~ld/jv)” 
Solke interjo: node motion using a I - D stretching routine 
Construct left-hand side of (4) 
Apply type I boundary conditions at .v = 0 and x = 7 
Apply type 111 boundary condition on node N using (29) 
Solve for j T” ’ ’ ) “I. ’ 
Convergence I/ 1 -(T”’ + ‘/ ?)i + ’ iI < IO -’ where N is the phase boundary node 

c--m=m+ I--- No--! 1 
Yes --+ Update arrays 

X-=/i+1 
+-- No ---Time limit reached --------I 

I 
Yes --*Terminate Program 
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(c) two-dimensional, unstable solidification with interfacial kinetics and cur- 
vature. 

For stable Stefan solidification problems our solution strategy follows Table I. 
The phase-front velocities are initially obtained from the previous time step or 
initial conditions. These velocities are used to position the grid at time tk’+” and 
they are used in the advection term of (4). Type I boundary conditions are applied 
along the phase front since the interface is isothermal. Consequently, solution of (4) 
yields the velocity boundary condition integrated over S in a heat conserving man- 
ner [9]. This result provides new phase front velocity estimates and the calculations 
are repeated until convergence is reached during the time step. 

The one-dimensional, undercooled solidification routine [4] modified the above 
strategy, Table II. The phase front velocity is obtained from (2d) with @ = 0. In this 
system the phase front is not necessarily isothermal and type III boundary con- 
ditions are applied on the phase front. The surface integral in (4) reduces to its 1-D 
version: ’ 

for interface node N. The new phase front temperature estimate ( T’; + ’ )/‘ + ’ from 
solution of (4) is then used in (2d) to update the velocity estimate for the next 
iteration. As in the stability analysis presented for curvature previously, Tk+ ’ can- 
not be simply lagged in the iteration without incurring a time-step constraint based 
on d tpL/( L* d-v), which is prohibitive. 

The 2-D solidification of undercooled melts introduces the additional com- 
plication of curvature. Solution of this nonlinear algebraic system is flow charted in 
Table III. The phase front velocities are obtained from (2d) where @ is evaluated at 
time tl‘ +” by expanding a3 about its previous iteration estimate, i.e., 

A tridiagonal system involving phase boundary nodes is required to solve for the 
position update 6, = (x”’ - x”’ ’ )f + ’ in the velocity equation 

(jc , I + 0 )“I ’ 
+At(@os cx,)(yT /L) ’ ,I7 2x, 

+(Atp/cosa,)T~“+“‘“‘=O (31) 

which produces the velocity estimate v’ ( = hi/At + V:’ i). v”’ are used to position 

’ Superscript m indicates iteration level; k indicates time level. 
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TABLE III 

Flow Chart for Solution of Two-Dimensional, Unstable 

Soliditication with Interfacial Kinetics and Curvature 

Initialize System 

-- The .S/c~ppiy Loop - Index h 

~-~ Ircvution Loop Index nt 
; q ii . 111”’ =(1:q’““‘“‘+(l -())[Tl” 

solve for (6; YIP (31) 
(c’,)“‘= ((j)!A,+ ;L’,;“, 1 

[(sy))‘” +“““= ((.\-,?,)I”+od/jv)“’ (*I 
Calculate I@ :“’ and [X/?Xj”’ via (15) using (* positions) 

Solve interior node motion using a Laplace operator on mesh at time level k 
Construct left-hand stde of (4) 

Apply boundary conditions on r according to Fig. I 

Apply type 111 boundary condition on S using (32) 

Solve for I T’ ’ I”’ t ’ 
Conv’ergence lI)(T”‘l~~“)~“i/~IO~.‘forall T,onS 

’ I c-- ,,I=~,I+ I ---No--- 

Yes -- + Update arrays 

k=k+l 

t-- No ---Time limit reached --------I 

I 
Yes - - +Terminate Program 

the grid at time k + 8 and in the advection term of (4), and calculation of T”‘+ ’ is 
begun via (4). The surface integral in (4) is the 2-D representation of (29); 

[ LV~lJ@,ds= [ L(V.pI,dS-j pLe(T”‘+‘-T”‘)h+‘@;dS, (32) 
” .Y ~ .\ s 

where T and @ are treated implicitly. As in the 1-D case, the new phase front tem- 
perature solution from (4) is used in (31) for the next velocity updates and the 
calculation is repeated to convergence. The numeric results presented typically 
required 15 iterations within each time step during early periods of the simulation. 
Once the dominant waveform surfaced the iteration count dropped to 5. 

PLANAR STABILITY ANALYSIS 

Mullins and Sekerka [I] and later Langer [3] have provided excellent steady- 
state, linear stability analyses for a planar front solidifying from a pure undercooled 
melt, and we use this to verify our numerical method. The kinetic attachment 
mechanism is assumed to be rapid such that (2) reduces to: 

T= -(yT,,,/L) @. (33) 
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Following Langer [3], a small perturbation [( .v, t) = <,, exp(iky + or) is imposed 
on the interface where k is the wavenumber and w is the amplification rate. For 
CD> 0 the perturbation grows with time and the system becomes unstable. A similar 
perturbation T,) exp( ik.v - q.u + or) is imposed on the temperature field. Application 
of the heat equation yields 

q’- = ( V!2D) + ,,I [( V/2D)’ + (k’ + to/D)], (34a) 

‘1” = ( b’/2D) - ,/[ ( 520)’ + (k’ + tlJ/D)], (34b) 

where we have retained the transient term o/D with D being the thermal diffusivity. 
Application of the boundary conditions on temperature and latent heat then yields 
the amplification rate (Eq. (3.14) in Ref. 131); 

tr) = I’[#. - V/D] - d,,k’D[y’, - py’]. (35) 

where CI’,, is the capillary length, (yT,,,/L)(c/L.), and p is the solid-liquid thermal 
conductivity ratio. While in [3] this relation is obtained for a steady state, unit 
undercooling situation, we find that these assumptions are not necessary, and that 

0.500 

0.000 

w 

., 11 -2 
-0.500- i: 

_ =lO 

jr 
.I 
1’ 
i: 
‘/ 
1 I; 

-1.000 1 
I I I I I I 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8. a0 

FIG. 6. Nondimensional amplitication factor W= o( WC,) as an inverse function of nondimensional 
wavenumber K = kik ( for capillary-diffusion ratios of L = 10 ?, 10e4, and the limiting case of L = 0. 
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(35) may be derived even when the background solution is transient (see Appen- 
dix). 

The majority of our numerical results are for Succinonitrile such that fl- 1. Sim- 
plifying (35) and nondimensionalizing u with k,, the critical (neutral stability) 
wavenumber for 9 = 0, gives 

w= (I -2) J[P + KZ + 2WY] - 9, (36) 

where M’= cf,j( Vk,), K = k/k,, Y =dz/&, I,= 2D/V and k, = l/Jm. In 
Fig. 6 we plot in nondimensional form the amplification factor as a function of 
wavenumber for various capillary--diffusion length ratios. Note that for typical 
values of Y - 10 ’ the amplification factor peaks at 0.38 and the fastest growing 
wave corresponds to that predicted by Langer [3], (ti = I/45). 

Below we seek to demonstrate the qualitative and quantitative reproduction of 
the main features of Fig. 6, including a critical wavenumber, k,,, separating long 
unstable waves from short stable ones; and a maximum growth wave at roughly 
(1 /,:3) k, which dominates in long-term simulation. We quantify the observed 
amplification rate by integrating the identity w< = ?[/?t; 

(0 = A In (<)/dr. (37) 

If one carries the analysis beyond its small-amplitude assumptions it is possible to 
predict the point at which the front velocity in “valleys” (negative C) will become 
negative: 

v + co< = 0. (38) 

Assuming - (fl is small, we have w = 0.38 Vk, and k, = $k, then solving (38) for c 
yields 

i = - 1.52/k = - 1.52i./2n, (39) 

i.e., the velocity reverses when the perturbation amplitude < is 0.24 of the 
wavelength. 

NUMERICAL SIMULATIONS 

Two-phase, two-dimensional solidilication problems were solved using Suc- 
cinonitrile and water thermal properties. Succinonitrile was selected because of its 
ideal thermal properties and extensive physical documentation and testing by 
Glicksman and co-workers [ 1331.51. Numeric testing of water was performed 
because of its obvious physical importance and to introduce effects of anisotropy. 
Table IV lists the thermal parameters used in the numeric tests for each material 
and Table V summarizes the numerical test parameters. The domain in Fig. 1 was 
discretized with 20 proportionally spaced elements perpendicular to the phase front 
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TABLE IV 

Thermal Properties Used for Succinonitrile and Water 
in the Numerical Simulations 

Property Symbol Units Succinonitrile Water 

Thermal conductivity 

Volumetric specific heat 

Volumetric latent heat of fusion 
Thermodynamic equilibrium 

temperature for planar surface 
Surface energy 
Kinetic mobility 

K cal;s. cm: C 5.36 x IO ’ 
5.32 x IO a 

C’ cal’cm’ C 0.470 
0.459 

L c&cm ’ 10.86 

7‘,,, K 331.24 

., cal, cm’ 0.214x IO h 

b ems C 20 

5.38 x 10 3 
1.35 x IO m1 

0.461 
I .007 
73.07 

273.15 

0.695~10 ’ 
20 A axis 

0 C axis 

in the liquid region and 4 similarily spaced elements in the solid zone. The dis- 
cretization along the phase front involved 44 equally spaced elements in both solid 
and liquid regions. The boundary conditions along r are shown in Fig. I. 

For a unit nondimensional undercooling, AU = A Tc./L = 1, an arbitrary steady- 
state background velocity may be selected [3]. We took advantage of this fact for 

TABLE V 

Test Parameters Used in the Numerical Simulations 

Figure Nodes,!;. Sigma 
f7 

Fourier 
I 

Peclet 
Pe 

Courant 
co 

Undercooling 
A u 

8 IO 15 120 2.4E-3 0.29 1.0 
9 IO 35 300 0.75E-3 0.23 I.0 

II 30 12 100 l.E-3 0.1 1.0 
I3 90 830 7400 O.O03E-3 0.023 I.0 
I4 90 850 26000 0.24E-3 6.0 .25 
I7 90 300 7500 0.2E-3 1.5 1.0 

No/c,. All tests used: 21 proportionally spaced nodes perpendicular to phase front in the liquid 
region, 5 similarly spaced nodes perpendicular to phase front in the solid region, the liquid field extended 
98% of the thermal range based on III = exp[ - V(.y - S)/O] - I, the average CPU time was 6 min/time 
step for a 25 x 45 grid, nondimensional formulations 

0 = p(;~T,,,/L)(At/As*L where dS is the node spacing along the phase front, 

r=D(Ar/As2), where dx is the node spacing into the undercooled liquid. 

Pe = V, AuJD, 

Co=r(Pe), 

AU = (AT/L. 
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the first series of tests. Consider the test case where Succinonitrile had the following 
initial conditions; 

dS/dt = V = 0.01 cm/s, 

U,=exp[-V(x-S)/D]-1, 

u,=o. 

The neutral stability wavelength predicted via (36) is I*, = 1.58 x 1O--3 cm and a 
fastest growing wavelength of L,,, = 2.74 x lop3 cm. The domain was discretized 

x10 -1 

0.137 

-0.0045 0. 0’3 13 0. 0’671 0 
x10 -1 

I.29 

FIG. 7. Finite element grid about phase front showing initial node-to-node perturbation with 
rlr = A%**. 
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with approximately 10 nodes/&,,, . A numeric node-to-node perturbation was 
introduced such that each phase front node had an angle change of da**, Fig. 7. As 
the test proceeded the numeric perturbation decayed. This node-to-node oscillation 
crudely represented a wavelength of i = 0.6 x 10 ’ cm which is well below I., and 
stable in the continuum. As the front continued to advance into the undercooled 
melt a longer unstable waveform surfaced, Fig. 8. The average wavelength of this 
instability was jL = 2.6 x 10 ’ cm and the fastest growing wave measured 
i=2.8x 10 ’ cm, comparable to E.,,,. The source of this unprovoked disturbance 
is roundoff error, which can be expected to seed all wavelengths equally. The 
emergence of E, w i.,,, as the dominant feature supports the validity of the 
numerical method. Further verification is found in the evaluation of o for 
EL=2.Xx 10 ‘cm: 15s ’ via (35) and 17s ’ for the numerical wave via (37). 

Increasing the planar front velocity tenfold produces similar results. The numeric 
perturbations decayed with time while unstable waveforms surfaced with the fastest 
growing wavelength of E,= 8.4x 10 4 cm compared to Imax = 8.7 x 10 ‘cm via 
(35) Fig. 9. This test case was repeated without the initial numeric perturbations 
and similar physically unstable waveforms emerged. 

x10 
-2 

0.850 

-e....j .0028 cm t.-.m + = Node Locor~on 

: 0.600? .0.457 

: 

,” 

t 

0.100 
I I I 

0.0000 0.0343 0.0685 0.1028 0.1370 

Xl0 
-1 

Interface Length (cm) 

FIG. 8. As solidification front advances the numeric perturbation decays and an unstable waveform 
surfaces. The background velocity is V=O.Ol cm/s and i.,,, =2.74x IO-‘cm via Eq. (35). The times 
shown are for time steps 17 and 41, respectively. 
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0.0180 

m  
” 

f 
c 

0.0060 

0.000 0.14s 0.289 0.434 
x10 -2 

FIG. 9. A tenfold increase in velocity ( V= 0.1 cm/s) produces i,,, = 8.7 x lo- -1 cm via Eq. (35). The 
times shown are for time steps 3 and 9. respectively. 

The above experiments were performed with symmetry boundary conditions 
applied on both sides of the phase front, and thus only support harmonics of the 
fundamental wavelength that is twice the boundary length. To ensure that the onset 
and growth of the observed numeric wavelengths were not dictated by the boun- 
dary conditions, the phase front length and node spacing were set to allow 
numerous wavelengths in the physically unstable range. A Fourier decomposition of 
Fig. 8 was performed which clearly shows the available wavelengths and the 
wavelength migration of the spectrum toward the harmonic closest to that 
corresponding to I.,,, , Fig. lOa--d. 

FIG. IO. Top graph shows perturbations from the average phase front along the interface. The lower 
graph is a Fourter decomposition of the interface showing the Fourier coefficient magnitude of each 
avjailable wavelength given the symmetry boundary conditions of the interface. The wavelengths are 
represented as harmonics of the wavelength that is twice the boundary length. (a) At time t = 0.002 s, the 
Nyquist frequency is dominant (i/d.v = 2). (b) At time I = 0.023 s, the interface has returned to a planar 
front and all Fourier coefficients are small. (c) Unprovoked wavelengths are emerging at time t =0.127 s. 
Equation (35) predicts stable wavelengths for i. <is ( = 1.58 x IO ‘cm) or for harmonics 2 18. (d) The 
largest Fourier coefficient at t = 0.295 s corresponds to imsr = 2.74 x 10 ’ cm. 
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The following test demonstrated the robustness of the deforming mesh technique. 
The initial thermal conditions of Fig. 8 were repeated on a grid discretized with 30 
nodes/i.,,, and a boundary length of 3i.,,,. The resolution perpendicular to the 
front remained unchanged. A small perturbation .Y = .x0 + co cos(2rr.r/j.miln) was used 
to seed the simulation. Figure lla shows the development and growth of this 
unstable waveform as a function of time with the initial and final grid deformations 
shown in Figs. 11 b. c, respectively. The thermal profile at the end of the simulation 
shows that the temperature disturbance due to the perturbations is limited to a 

LL I I 

FIG. I I. (a) Development and growth of &,,,,. (b) Initial grid deformation in the vicinity of the inter- 

face. (c) Final grid deformation in the vicinity of the interface at time =0.X s. 
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range of a few i,,,,,, ; and that the zero isotherm intersects the interface where a3 z 0, 
Fig. 12. 

In the above simulations the numeric system became unstable as the perturbation 
length i approached 0.2&,,,, We increased the phase front resolution to 90 
nodes/i.,,,,, and performed tests using the first test-case paremeters with a boundary 
length of L,,,,,/2. The node resolution perpendicular to the planar front remained 
unchanged. As the interface advanced the unstable waveform EL,,, grew in 
amplitude, Fig. 13. However, the numeric system became unstable at approximately 
the same <ii ratio of 0.2. The instability manifested itself approximately 1R behind 
the waveform tip where R is the tip radius of curvature. We note from Huang and 
Glicksman [ 141 that sidebranching emerged at approximately 1.2R behind the 
(1.. :) dendrite tip over a wide range of undercooling. Unfortunately, our current 

L I i- - 
73 8.5214 0.5750 

FIG. 12. Thermal contour bands in the undercooled liquid range from U=O to li= -0.02 in equal 
temperature increments where (’ is the nondimensional temperature. The shaded zone is the solid and 
the isotherm values drop as the distance into the undercooled liquid increases. Only the lower half of the 
interface is shown for clarity. Note that the zero isotherm intersects the interface where C-0 and that 
hot spots have formed in the “valleys” of the interface. 
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c 
a 

8 

0.200 
4 1 

I--- 
0.190 -+------ -~ 

B ,000 -+------7-----j 

0.0080 0.0700 8.1400 

Xl0 
-2 

Interface LenQrh (cm) 

FIG. 13. The node resolution is increased to 90 nodes/wavelength to study interface stability as a 
function of i/i. 
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0.1651 

0.0000 
! = !  

0.3961 

0.0763 

0.000 a. 279 

x10 -2 

Interface Length (cm) 

FIG. 14. The evolution and decay of several waveforms is recorded during the transient planar 
simulation with d(/ = 0.25. 
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planar (x, y) model allows no ,V motion such that the waveform cannot realign itself 
to simulate a sidebranch. In a future paper we will address this issue. 

For AU # 1 there is no steady-state planar front velocity. However, the con- 
tinuum stability analysis remains valid for the transient situation as mentioned 
previously. Consider the test case where AU = 0.25 with an initial velocity of 
V = 0.02 cm/s and a small amplitude waveform i = 1.4 x 10 3 cm = 1.2)“,, . Initially, 
the average front velocity decreased with time. Consequently, i.,, increased such that 
the initial waveform became stable and the numerical results show the phase front 
returned to a planar front. As the front progressed a new longer waveform emerged 
with E, = 2.8 x 10 3 cm. The average front velocity at the onset of this waveform 
shows that waveform to be in the unstable region. This waveform propagated for a 
period of time and then transformed into another still longer waveform 

--...-...--. Fit-St Harmon ,c 

_-.-.- -.- ---. Second Harmon IC 

Third l-larmon I c 

._ _ .- - Fourth Harmon ,c 

0.1650 

0.1414 

: 
: 

& 0.1179 

: 
L 
c 
t 
u 0.0943 

: 

:: 
” 
t 0.0707 
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2 
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0.0471 

0.0236 

0.0000 

Ii 

! 
.4c 30 

,’ , .’ / 
_’ 

-/-.---.-- 
- / --- 

---7.7 /,;’ 
--.-.: .-.:-.-.I.. .-. -. ./:.c- 

I I I I I I 
163 0. ise 0.980 1.350 1.888 t.E.0 2.788 3.158 

FIG. 15. The Fourier coefficients of the waveforms shown in Fig. 14 are plotted as a function of time. 
The exponential growth rate of the unstable waveforms is in complete agreement with the stability 
analysis presented. 
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(i. = 5.6 x 10 ’ cm) as the front velocity continued to decay with time, Fig. 14. The 
interface was Fourier decomposed and the magnitudes of the first 4 harmonics plot- 
ted as a function of time, Fig. 15. The exponential growth of the most unstable 
waveforms is in complete agreement with that predicted via the stability analysis. In 
Fig. 16, I.,, and &,,,, via (35) are shown as a function of time based on the average 
front velocity. The dominant numeric waveform is that closest to I$,,,, throughout 
the simulation, as expected, Fig. 16. 

The phase-front velocity in (2d) is a function of mobility, p(, which was treated as 
a constant for Succinonitrile. However, the nonisotropic nature of water at small 
undercoolings is a function of the large interfacial kinetic differences between the 
A axis and C axis growth planes. A strong preference for growth in the basal 
plane along the A axis exists compared to that perpendicular to the basal plane, 

.._ First Harmon uc 

-.- -.-.-.-.-.-. Second Harmon ,c 

_ ._ - .- Fourth Harmon tc 
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Uauclcngth OC moxamum ~nstab,, I, 

@.-WE-- 

E 
: .- -.-.-.- - - -.-.-.-.-.- -.-.- 

I: L 

,” 
2 0.2EB-- 

: 
4 

!a.808 ’ 
I I I I I I 

0.008 0.445 B. 890 1.33s 1.788 2.225 2.670 3. 1s 

FIG. 16. The dominant numeric waveform is that closest to i.,,, throughout the transient simulation. 
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the C axis. Consequently, the mobility is a function of position which we described 
as a function of its A axis orientation, i.e., 

P(x,Y)=cos(~)P,=,, (40) 

where the x, y orientation corresponds to the A, C planes of ice, respectively, and 
the mobility in the C plane is taken as zero. Two test simulations were performed 

x10 -2 

0.4800 

0.3600 

0.3200 

0.2800 

0.2400 
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:0.2000 
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~0.0900 

0.0400 

0.000a 
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I I I I I I 

00 0.0393 8.0786 0.1179 0.1571 0. 1964 8.2357 8.2758 
x10 -2 

Interface Length (cm) 

FIG. 17. The anisotropic interface shape becomes elongated relative to that in the isotropic test only 
after signilicant portions of the interface are orientated in the nongrowth direction, i.e., the C-axis. 
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using water thermal properties and an initial x-velocity of 0.01 cm/s. The first test 
used an isotropic mobility whereas the second case used (40). The anisotropic 
results are identical to the isotropic case when the normal direction coincides with 
the x-direction. After the waveform amplitude became significant however, the 
anisotropic shape was elongated compared to that of the isotropic simulation, 
Fig. 17. However, the actual volume of ice formed was somewhat less in the 
anisotropic case, as expected. Since in the current calculations we restrict y motion, 
the isotropic V, is expressed as: 

v,= Wcos a)[( -YT,,,IL) @ - Tl 

with p constant, whereas, the anisotropic V, is 

(41) 

(42) 

Consequently, for the same thermal field and curvature the isotropic velocity is 
greater than or equal to the anisotropic velocity. 

Summary and Conclusions 

Two-dimensional finite element solutions for planar solidification from an under- 
cooled melt were presented. The stability analysis of the planar front presented by 
Langer [3] is valid for transient situations and provides an excellent basis for 
model testing. The numeric simulations showed the decay of stable disturbances as 
well as the onset and propagation of unstable numerical waveforms which 
reproduced those predicted in the continuum analysis with fidelity. The inherent 
instabilities associated with the freezing process required a more comprehensive 
treatment of the interfacial temperature than that specified in stable Stefan-type 
problems. Radiation-type boundary conditions on the interface that incorporated 
temperature effects associated with curvature and interfacial kinetics were necessary. 
The interfacial temperature depression due to curvature is the primary restraining 
factor during dendritic growth. However, the numerical curvature formulation has 
discretization limits for stability and was treated implicitly within the thermal 
iteration and within the time step to overcome severe time-step constraints imposed 
on explicit curvature expressions. The numeric simulations of anisotropic ice 
showed similar waveforms patterns at the onset of the instability to those of 
isotropic cases. However, as the amplitude of the waveform increased significant 
lengths of interface became orientated along the C axis where interfacial kinetics 
inhibit growth. This altered the interface shape by elongating the dendrite finger. 

We are currently expanding these formulations to investigate sidebranching and 
solute effects. Along these lines we note that Ungar and Brown [16-181 are 
developing related finite element techniques to model the evolution of dendrites in 
multi-component alloys. Their work concentrates on solute diffusion with a fixed 
thermal field imposed. While their numerical formulations are different from those 
presented here, they also noted the need to treat the location of the interface 
implicitly to avoid time step constraints. We believe our results in the thermal 
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domain complement their solute findings and that our stability analysis of the inter- 
face may be applicable to their system. 

APPENDIX 

The amplification rate (35) obtained by Langer [3] is easily obtained without 
the assumptions of a steady-state, unit undercooling in the melt at infinity. The key 
is the expression of the background temperature field TR in the melt in a Taylor 
series. The first derivative may be obtained from the latent heat balance: 

(?T,,‘?s)\,~= - LVjK, (AlI 

where V is the background velocity and .Y is the direction of growth as in Fig. 1. 
The second derivative is available from the heat equation: 

(?‘T/?.Y~) = (l/D)(?T/cit - V?T/‘a?.u), (A21 

where s is assumed fixed to the moving front. Since the background situation is a 
planar front, curvature is zero and TR is constant at .u=O, 

(c?2T,/c?.u’)l,s = - ( V/D) ?TR/Cx = V’L/(DK). (A3) 

Thus the background distribution of T and ?T/?.Y at any point in time is, to first 
order, 

T,= -(LV,‘K)x, (A4) 

(Ki?T,/c?x)== -LV+(LV’/D).u. (A5) 

Add the perturbation T, exp(iky - 4.x + ot) and co exp (iky + wt) to the tem- 
perature and boundary position, with q given by (34). Satisfaction of temperature 
boundary condition (33) to first order yields, with the help of (A4), the temperature 
perturbation amplitudes in both phases: 

T:,=i,,CLVIK-k2yT,,,lL1, (A61 

T;: = &,[k2;)T,,/LJ (A7) 

Equation (A5) may then be utilized in the latent heat balance at .X = <, and the 
amplification rate (35) is obtained to first order. 
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